The Prague Post - Spinal cord implant helps paralysed patients walk again

EUR -
AED 4.02547
AFN 78.958383
ALL 99.102869
AMD 431.181955
ANG 1.961978
AOA 1003.890567
ARS 1184.765046
AUD 1.813586
AWG 1.97271
AZN 1.867466
BAM 1.955265
BBD 2.22659
BDT 133.983319
BGN 1.955265
BHD 0.412787
BIF 3277.602688
BMD 1.09595
BND 1.474296
BOB 7.619914
BRL 6.405394
BSD 1.102698
BTN 94.079244
BWP 15.358795
BYN 3.608812
BYR 21480.619234
BZD 2.215094
CAD 1.559263
CDF 3148.664634
CHF 0.944431
CLF 0.02729
CLP 1047.223301
CNY 7.980215
CNH 7.994999
COP 4582.945323
CRC 557.847278
CUC 1.09595
CUP 29.042674
CVE 110.234821
CZK 25.256829
DJF 196.376238
DKK 7.461451
DOP 69.640934
DZD 146.03502
EGP 55.406831
ERN 16.439249
ETB 145.347308
FJD 2.537019
FKP 0.847795
GBP 0.850992
GEL 3.01429
GGP 0.847795
GHS 16.970527
GIP 0.847795
GMD 78.997119
GNF 9480.074229
GTQ 8.45127
GYD 228.536272
HKD 8.520633
HNL 28.038338
HRK 7.531044
HTG 143.530764
HUF 404.54591
IDR 18346.949665
ILS 4.100568
IMP 0.847795
INR 93.650132
IQD 1430.891791
IRR 46360.405806
ISK 144.204462
JEP 0.847795
JMD 172.42419
JOD 0.777072
JPY 161.061946
KES 141.527433
KGS 95.002298
KHR 4365.330633
KMF 489.529208
KPW 986.361205
KRW 1599.015607
KWD 0.337157
KYD 0.910826
KZT 556.162432
LAK 23685.841231
LBP 98372.711411
LKR 324.07413
LRD 218.985421
LSL 20.902803
LTL 3.236056
LVL 0.66293
LYD 5.289988
MAD 10.429326
MDL 19.551233
MGA 5069.578931
MKD 61.05679
MMK 2300.919896
MNT 3846.361639
MOP 8.775473
MRU 43.593447
MUR 49.000806
MVR 16.923331
MWK 1897.317993
MXN 22.386696
MYR 4.861215
MZN 70.003894
NAD 20.902803
NGN 1681.066767
NIO 40.290501
NOK 11.790932
NPR 149.910449
NZD 1.95777
OMR 0.421946
PAB 1.09595
PEN 4.037053
PGK 4.46999
PHP 62.764717
PKR 306.904853
PLN 4.245513
PYG 8757.469729
QAR 3.989667
RON 4.952931
RSD 116.586887
RUB 93.840941
RWF 1555.449869
SAR 4.110221
SBD 9.312612
SCR 15.97682
SDG 658.021292
SEK 10.947921
SGD 1.470849
SHP 0.861245
SLE 24.933268
SLL 22981.523891
SOS 624.324825
SRD 40.248477
STD 22683.951476
SVC 9.589967
SYP 14249.994157
SZL 20.902803
THB 37.792726
TJS 11.899889
TMT 3.833642
TND 3.357047
TOP 2.638671
TRY 41.641737
TTD 7.422798
TWD 36.332658
TZS 2923.758392
UAH 45.158896
UGX 4009.400205
USD 1.09595
UYU 46.167964
UZS 14171.813622
VES 77.086835
VND 28252.54745
VUV 134.896075
WST 3.078778
XAF 652.705611
XAG 0.037037
XAU 0.000361
XCD 2.966325
XDR 0.817067
XOF 652.705611
XPF 119.331742
YER 269.409315
ZAR 20.929909
ZMK 9864.868719
ZMW 30.636217
ZWL 352.89544
  • RBGPF

    69.0200

    69.02

    +100%

  • JRI

    -0.8600

    11.96

    -7.19%

  • SCS

    -0.0600

    10.68

    -0.56%

  • RYCEF

    -1.5500

    8.25

    -18.79%

  • CMSD

    0.1600

    22.83

    +0.7%

  • BCC

    0.8100

    95.44

    +0.85%

  • BCE

    0.0500

    22.71

    +0.22%

  • NGG

    -3.4600

    65.93

    -5.25%

  • GSK

    -2.4800

    36.53

    -6.79%

  • RELX

    -3.2800

    48.16

    -6.81%

  • CMSC

    0.0300

    22.29

    +0.13%

  • AZN

    -5.4600

    68.46

    -7.98%

  • VOD

    -0.8700

    8.5

    -10.24%

  • RIO

    -3.7600

    54.67

    -6.88%

  • BTI

    -2.0600

    39.86

    -5.17%

  • BP

    -2.9600

    28.38

    -10.43%

Spinal cord implant helps paralysed patients walk again
Spinal cord implant helps paralysed patients walk again

Spinal cord implant helps paralysed patients walk again

In 2017, Michel Roccati was in a motorbike accident that left his lower body completely paralysed. In 2020, he walked again, thanks to a breakthrough new spinal cord implant.

Text size:

The implant sends electrical pulses to his muscles, mimicking the action of the brain, and could one day help people with severe spinal injuries stand, walk and exercise.

It builds on long-running research using electrical pulses to improve the quality of life for people with spinal cord injuries, including a 2018 study by the same team that helped people with partial lower-body paralysis walk again.

"It was a very emotional experience," Roccati told journalists of the first time the electrical pulses were activated and he took a step.

He was one of three patients involved in the study, published Monday in the journal Nature Medicine, all of them unable to move their lower bodies after accidents.

The three were able to take steps shortly after the six-centimetre implant was inserted and its pulses were fine-tuned.

"These electrodes were longer and larger than the ones we had previously implanted, and we could access more muscles thanks to this new technology," said Jocelyne Bloch, a neurosurgeon at the Lausanne University Hospital who helped lead the trial.

Those initial steps, while breathtaking for the researchers and their patients, were difficult and required support bars and significant upper body strength.

But the patients could start rehabilitation immediately, and within four months Roccati could walk with only a frame for balance.

"It's not that it's a miracle right away, not by far," cautioned Gregoire Courtine, a neuroscientist at the Swiss Federal Institute of Technology who led the research with Bloch.

But with practice, Roccati can now stand for several hours and walk nearly a kilometre. The Italian described being able to look clients in the eye, have a drink at a standing table and take a shower standing up thanks to the implant.

He and others in the trial were also able to climb stairs, swim and canoe.

- 'I see the improvement' -

The improvements depend on the electrical stimulation, which is triggered via a computer carried by the patient that activates a pattern of pulses.

Two of the patients can now activate their muscles slightly without electrical pulses, but only minimally.

By comparison, some patients with partial lower body paralysis treated in an earlier study are able to move their previously immobile legs and stand without stimulation.

The three men in the new trial were all injured at least a year before the implant and Bloch hopes to trial the technology sooner after an accident.

"What we all think is that if you try earlier it will have more effect," she said.

There are challenges: in early recovery, a patient's capacity is still in flux, making it hard to set a baseline from which to measure progress, and ongoing medical treatment and pain could hamper rehabilitation.

So far, the implants are also only suitable for those with an injury above the lower thoracic spinal cord, the section running from the base of the neck to the abdomen, because six centimetres of healthy spinal cord is needed.

The idea of using electrical pulses to address paralysis stemmed from technology used to regulate pain, and the researchers said they see scope for further applications.

They have also shown it can regulate low blood pressure in spinal cord injury patients and plan to soon release a study on its use for severe Parkinson's disease.

The team cautioned that significant work remains before the implant is available for treatment outside clinical studies, but said they receive around five messages a day from patients seeking help.

They next plan to miniaturise the computer controlling the pulses so it can be implanted in patients and controlled with a smartphone.

They expect this to be possible this year, and have plans for large-scale trials involving 50-100 patients in the United States and then Europe.

Roccati said he activates the implant daily at home and continues to get stronger.

"I see the improvement every day," he said.

"I feel better when I use it."

I.Mala--TPP