The Prague Post - Life's 'basic building blocks' found in asteroid samples

EUR -
AED 4.172469
AFN 81.226466
ALL 100.310777
AMD 444.244667
ANG 2.03356
AOA 1042.821867
ARS 1220.13733
AUD 1.807145
AWG 2.044748
AZN 1.935661
BAM 1.960237
BBD 2.294213
BDT 138.054564
BGN 1.961833
BHD 0.42777
BIF 3323.851373
BMD 1.135971
BND 1.500396
BOB 7.851771
BRL 6.659749
BSD 1.136282
BTN 97.823546
BWP 15.847869
BYN 3.718549
BYR 22265.033118
BZD 2.282366
CAD 1.575649
CDF 3265.353315
CHF 0.926352
CLF 0.02877
CLP 1104.02802
CNY 8.283619
CNH 8.27647
COP 4864.114557
CRC 583.02471
CUC 1.135971
CUP 30.103234
CVE 111.723203
CZK 25.124845
DJF 201.885227
DKK 7.469696
DOP 70.093827
DZD 149.546094
EGP 58.259952
ERN 17.039566
ETB 147.907835
FJD 2.589451
FKP 0.877892
GBP 0.868347
GEL 3.135724
GGP 0.877892
GHS 17.676153
GIP 0.877892
GMD 81.226307
GNF 9831.830079
GTQ 8.763913
GYD 237.718034
HKD 8.810308
HNL 29.302419
HRK 7.534333
HTG 148.666666
HUF 409.938323
IDR 19081.076584
ILS 4.222235
IMP 0.877892
INR 97.656196
IQD 1488.122111
IRR 47824.382762
ISK 145.295033
JEP 0.877892
JMD 180.107643
JOD 0.805522
JPY 163.023646
KES 147.112573
KGS 99.341107
KHR 4563.196216
KMF 499.263598
KPW 1022.440932
KRW 1614.46525
KWD 0.348539
KYD 0.946943
KZT 587.183822
LAK 24605.133934
LBP 101726.210383
LKR 338.924114
LRD 227.024253
LSL 22.095071
LTL 3.354228
LVL 0.687138
LYD 6.316432
MAD 10.683852
MDL 20.140585
MGA 5287.945759
MKD 61.62647
MMK 2385.165785
MNT 3990.8206
MOP 9.077145
MRU 45.15528
MUR 50.554963
MVR 17.498202
MWK 1972.046182
MXN 23.08279
MYR 5.023837
MZN 72.60034
NAD 22.077642
NGN 1814.225757
NIO 41.758725
NOK 12.117749
NPR 156.517874
NZD 1.949496
OMR 0.43697
PAB 1.136272
PEN 4.234337
PGK 4.574599
PHP 64.754939
PKR 318.810708
PLN 4.289102
PYG 9090.574971
QAR 4.135621
RON 4.979761
RSD 117.292465
RUB 94.489935
RWF 1607.399075
SAR 4.264475
SBD 9.490317
SCR 16.273869
SDG 682.154808
SEK 11.102759
SGD 1.498918
SHP 0.892695
SLE 25.877842
SLL 23820.746739
SOS 649.211631
SRD 42.083228
STD 23512.307787
SVC 9.942503
SYP 14770.008163
SZL 22.095057
THB 38.010012
TJS 12.345442
TMT 3.975899
TND 3.413029
TOP 2.660562
TRY 43.085154
TTD 7.726556
TWD 36.779567
TZS 3044.974597
UAH 47.038564
UGX 4175.524104
USD 1.135971
UYU 49.292433
UZS 14739.22511
VES 87.603875
VND 29259.775028
VUV 142.891608
WST 3.235249
XAF 657.445015
XAG 0.035233
XAU 0.000351
XCD 3.070019
XDR 0.819926
XOF 676.474861
XPF 119.331742
YER 278.657784
ZAR 21.729281
ZMK 10225.106937
ZMW 32.070586
ZWL 365.782223
  • RBGPF

    62.0100

    62.01

    +100%

  • CMSC

    -0.3500

    21.8

    -1.61%

  • BCE

    0.3800

    21.36

    +1.78%

  • SCS

    -0.0300

    10.18

    -0.29%

  • NGG

    2.4700

    68.06

    +3.63%

  • BCC

    0.9800

    95.66

    +1.02%

  • RIO

    1.9900

    56.86

    +3.5%

  • GSK

    1.0400

    34.64

    +3%

  • AZN

    1.4200

    66.29

    +2.14%

  • VOD

    0.2800

    8.73

    +3.21%

  • BTI

    1.0200

    41.57

    +2.45%

  • RYCEF

    -0.0100

    9.12

    -0.11%

  • BP

    0.3600

    26.59

    +1.35%

  • JRI

    0.1450

    11.91

    +1.22%

  • RELX

    0.1000

    49.12

    +0.2%

  • CMSD

    -0.3000

    21.9

    -1.37%

Life's 'basic building blocks' found in asteroid samples
Life's 'basic building blocks' found in asteroid samples / Photo: OLIVIER DOULIERY - AFP

Life's 'basic building blocks' found in asteroid samples

Pristine samples of the asteroid Bennu transported to Earth contain the "basic building blocks" for life, shedding new light on the perennial question of how life began on our planet.

Text size:

The revelation, in two studies published Wednesday, is the result of work on just 120 grams of material -- about the weight of a banana -- collected from Bennu by NASA's OSIRIS-REx spacecraft in 2020.

The samples from Bennu, then around 300 million kilometres (186 million miles) from Earth, were returned in a capsule that OSIRIS-REx dropped off during a pass-by in 2023.

Initial analysis had already revealed evidence of high-carbon content and water.

But the new research found that evaporated water on Bennu's parent asteroid left behind "the raw ingredients of life", said Tim McCoy, curator of meteorites at the Smithsonian's National Museum of Natural History and co-lead author of one of the studies.

"We have discovered that next step on a pathway to life," he said in a press release issued by the museum.

Bennu appears to have formed around 65 million years ago from the debris of a parent asteroid dating back some 4.5 billion years.

The findings suggest Bennu's parent was once home to pockets of liquid water. When these evaporated, they left behind a "briny broth" of salts and minerals.

Some of the minerals include compounds that have never been seen in samples from outer space, the museum said.

And analysis of the samples strongly suggests a "non-terrestrial origin", adds one of the studies.

That could lend support to the theory that life on Earth was seeded from outer space.

- 'Unprecedented insight' -

The samples "give unprecedented insight into the processes that drove the formation of the Solar System," according to Yasuhito Sekine, a professor at the Institute of Science Tokyo.

"This discovery was only possible by analysing samples that were collected directly from the asteroid then carefully preserved back on Earth," he added.

"The salts would otherwise have rapidly absorbed moisture in the Earth's humid atmosphere."

The researchers believe similar salty brines may exist on other extraterrestrial bodies, including the dwarf planet Ceres and Saturn's moon Enceladus, as well as other asteroids.

They plan to reexamine specimens already on Earth for traces of compounds that previous research might have missed.

"Even though asteroid Bennu has no life, the question is could other icy bodies harbour life?" said Nick Timms, an associate professor at Curtin University's School of Earth and Planetary Sciences also involved in the research.

Much about life's origin remains unclear despite the secrets revealed from Bennu, McCoy cautioned.

"We now know we have the basic building blocks to move along this pathway towards life, but we don't know how far along that pathway this environment could allow things to progress," he said.

Still, Sara Russell, co-lead author with McCoy and a cosmic mineralogist at the museum, said the research had made "huge progress in understanding how asteroids like Bennu evolved, and how they may have helped make the Earth habitable".

C.Sramek--TPP